1 Graph Conceptuals

(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with \(n \) vertices has \(n - 1 \) edges, it must be a tree.

2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.

3. In BFS, let \(d(v) \) be the minimum number of edges between a vertex \(v \) and the start vertex. For any two vertices \(u, v \) in the fringe (recall that the fringe in BFS is a queue), \(|d(u) - d(v)| \) is always less than 2.

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false otherwise. Also, provide a \(\Theta \) bound for the worst case runtime of your algorithm.
2 Fill in the Blanks

Fill in the following blanks related to min-heaps. Let \(N \) is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are distinct.

1. \texttt{removeMin} has a best case runtime of \underline{\hspace{2cm}} and a worst case runtime of \underline{\hspace{2cm}}.

2. \texttt{insert} has a best case runtime of \underline{\hspace{2cm}} and a worst case runtime of \underline{\hspace{2cm}}.

3. A \underline{\hspace{2cm}} or \underline{\hspace{2cm}} traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.

4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in \underline{\hspace{2cm}} places in the heap. (Feel free to draw the heap in the space below.)

5. Given a min-heap with \(2^N - 1 \) distinct elements, for an element

 \begin{itemize}
 \item to be on the second level it must be less than \underline{\hspace{2cm}} element(s) and greater than \underline{\hspace{2cm}} element(s).
 \item to be on the bottommost level it must be less than \underline{\hspace{2cm}} element(s) and greater than \underline{\hspace{2cm}} element(s).
 \end{itemize}

 \textit{Hint:} A complete binary tree (with a full last-level) has \(2^N - 1 \) elements, with \(N \) being the number of levels. (Feel free to draw the heap in the space below.)
3 Heap Mystery

We are given the following array representing a min-heap where each letter represents a unique number. Assume the root of the min-heap is at index zero, i.e. A is the root. Our task is to figure out the numeric ordering of the letters. Therefore, there is no significance of the alphabetical ordering. i.e. just because B precedes C in the alphabet, we do not know if B is less than or greater than C.

Array: [-, A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an insert. The resulting state of the min-heap is shown below.

Array: [-, A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first operation has already been filled in for you!

Hint: Which elements are gone? Which elements are newly added? Which elements are removed and then added back?

1. removeMin()
2. ____________________________
3. ____________________________
4. ____________________________

(b) Fill in the following comparisons with either $>$, $<$, or ? if unknown. We recommend considering which elements were compared to reach the final array.

1. X ____ D
2. X ____ C
3. B ____ C
4. G ____ X