
CS 61B More Sorting
Spring 2024 Discussion 12: April 15, 2024

1 Quicksort
(a) Sort the following unordered list using Quicksort. Assume that we always choose first element as the

pivot and that we use the 3-way merge partitioning process described in lecture. Show the steps taken

at each partitioning step.

18, 7, 22, 34, 99, 18, 11, 4

Solution:

-18-, 7, 22, 34, 99, 18, 11, 4

-7-, 11, 4 | 18, 18 | 22, 34, 99

4, 7, 11, 18, 18 | -22-, 34, 99

4, 7, 11, 18, 18, 22 | -34-, 99

4, 7, 11, 18, 18, 22, 34, 99

(b) What is the best and worst case running time of Quicksort with Hoare Partitioning on N elements?

Given the two lists [4, 4, 4, 4, 4] and [1, 2, 3, 4, 5], assuming we pick the first element as the pivot every

time, which list would result in better runtime?

Solution: Best: Θ(N logN) Running Quicksort on a list that has a pivot splits the partition exactly

in half will result in Θ(logN) levels, with the same amount work as above (i.e. Θ(N) at each level).

For example, [3, 1, 2, 5, 4]. An alternative case is when we have all of the same element in the

array (i.e. [4, 4, 4, 4, 4]), since the two pointers in Hoare partitioning always end up in the middle.

Worst: Θ(N2). In general, the worst case is such that the partioning scheme repeatedly partions an

array into one element and the rest.

Running Quicksort on a sorted list will take Θ(N2) if the pivot chosen is always the first or last in the

subarray: [1, 2, 3, 4, 5]. At each level of recursion, you will need to do Θ(N) work, and there will

be Θ(N) levels of recursion. This sums up to 1 + 2 + · · ·+N .

(c) What are two techniques that can be used to reduce the probability of Quicksort taking the worst case

running time?

Solution:

1. Randomly choose pivots.

2. Shuffle the list before running Quicksort.

2 More Sorting

2 Radix Sorts
(a) Sort the following list using LSD Radix Sort with counting sort. Show the steps taken after each round

of counting sort. The first row is the original list and the last two rounds are already filled for you.

Solution:

The underlined sections denote the digits that have already been sorted.

30395 30326 43092 30315

1 43092 30395 30315 30326

2 30315 30326 43092 30395

3 43092 30315 30326 30395

4 30315 30326 30395 43092

5 30315 30326 30395 43092

(b) Sort the following list using MSD Radix Sort with counting sort. Show the steps taken after each round

of counting sort. The first row is the original list and the first round is already filled for you.

Solution:

21295 22316 30753 21248 30751

1 21295 22316 21248 | 30753 30751

2 21295 21248 |22316 | 30753 30751

3 21295 21248 |22316 | 30753 30751

4 21248 | 21295 | 22316 | 30753 30751

5 21248 | 21295 | 22316 | 30751 | 30753

(c) Give the best case runtime, worst case runtime, and whether or not the sort is stable for both LSD

and MSD radix sort. Assume we have N elements, a radix R, and a maximum number of digits in an

element W.

Solution:

Time Complexity

(Best)

Time Complexity

(Worst)

Stability

LSD Radix Sort Θ(W (N +R)) Θ(W (N +R)) Yes

MSD Radix Sort Θ(N +R) Θ(W (N +R)) Yes

(d) We saw in part (c) that radix sort has good runtime with respect to the number of elements in the list.

Given this fact, can we say that radix sort is the best sort to use?

Solution: No. Though radix sort runs linear with respect to the number of elements in the list, the

runtime also depends on the size of the radix R and the length of the longest ”word”W (or the number of

digits in a number). Additionally, it is not always possible to use radix sort, because not all objects can

More Sorting 3

be split up into digits. However, comparison sorts can be used on any object that defines a compareTo

method, and would work well with compareTo methods that are fast.

4 More Sorting

3 Sort Identification
Match the sorting algorithms to the sequences, each of which represents several intermediate steps in the

sorting of an array of integers. Assume that for quicksort, the pivot is always the first item in the sublist

being sorted. Note that these steps are not necessarily the first few intermediate steps and there may be

steps which are skipped.

Algorithms: Quicksort, Merge Sort, Heapsort, MSD Radix Sort, Insertion Sort

(a) 12, 7, 8, 4, 10, 2, 5, 34, 14

7, 8, 4, 10, 2, 5, 12, 34, 14

4, 2, 5, 7, 8, 10, 12, 14, 34

Solution: Quicksort. A pattern we can see is that most of the elements remain in the same order

relative to one another, but the first element keeps moving around. Taking a closer look at this element,

we note that everything to the left is less than it, and everything to the right is greater than, indicating

QuickSort.

(b) 23, 45, 12, 4, 65, 34, 20, 43

4, 12, 23, 45, 65, 34, 20, 43

Solution: Insertion Sort. A surefire way of identifying insertion sort is the fact it slowly builds a

partially sorted array on the left hand side, which is exactly what occurs here.

Another solution is merge sort (with a recursive implementation), where the left half has already been

fully merge-sorted

(c) 12, 32, 14, 11, 17, 38, 23, 34

12, 14, 11, 17, 23, 32, 38, 34

Solution: MSD Radix Sort. We first see that the numbers have been moved all over the place,

which is odd, but taking a closer look at how the numbers are oriented, we see that all the tens digits

are ordered in ascending order (10s, then 20s and 30s). This is immediately indicative of MSD Radix

Sort, sorting from the leftmost digit first.

(d) 45, 23, 5, 65, 34, 3, 76, 25

23, 45, 5, 65, 3, 34, 25, 76

5, 23, 45, 65, 3, 25, 34, 76

Solution: Merge Sort. We notice that the numbers stay relatively close to where they begin, but

we also see little sorted runs inside the array, like (23, 45) and (5, 65) for example. These small sorted

subarrays and the merging of the subarrays in halves of the array is indicative of Merge Sort.

(e) 23, 44, 12, 11, 54, 33, 1, 41

54, 44, 33, 41, 23, 12, 1, 11

44, 41, 33, 11, 23, 12, 1, 54

Solution: Heapsort. Heapsort always heapifies the array first, which on the second line we see the

maximum element, 54, at the start of the array. Heapifying usually shuffles around the array, which we

also see. Placing the maximum element at the back of the array and bubbling up the 44 seals the deal

that this is heapsort.

More Sorting 5

4 Conceptual Comparison Sorts Extra

Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the

question is T/F and the statement is true, provide an explanation. If the statement is false, provide a

counterexample.

(a) Give a 5 integer array that elicits the worst case runtime for insertion sort.

Solution: A simple example is: 5 4 3 2 1. Any 5 integer array in descending order would work.

(b) Give some reasons as to why someone would use mergesort over quicksort.

Solution: Some possible answers: mergesort has Θ(NlogN) worst case runtime versus quicksort’s

Θ(N2). Mergesort is stable, whereas quicksort typically isn’t. Mergesort can be highly parallelized

because as we saw in the first problem the left and right sides don’t interact until the end. Mergesort

is also preferred for sorting a linked list.

(c) You are given the following options:

(A) Quicksort (in-place using Hoare partitioning and choose the leftmost item as the pivot)

(B) Mergesort

(C) Selection Sort

(D) Insertion Sort

(E) Heapsort

(F) (None of the above)

For each of the statements below, list all letters that apply. Each option may be used multiple times

or not at all. Note that all answers refer to the entire sorting process, not a single step of the sorting

process, and assume that N indicates the number of elements being sorted.

Bounded by Ω(N logN) lower bound.

Worst case runtime that is asymptotically better than Quicksort’s worst case runtime.

In the worst case, performs Θ(N) pairwise swaps of elements.

Never compares the same two elements twice.

Runs in best case Θ(logN) time for certain inputs.

Solution: A, B, C. Bounded by Ω(N logN) lower bound. Both insertion sort and heapsort both have

a lower bound of Ω(N).

B, E. Worst case runtime that is asymptotically better than Quicksort’s worst case runtime. Quicksort

has a worst case runtime of O(N2), while both mergesort and heapsort have a worst-case runtime of

O(N logN).

6 More Sorting

C. In the worst case, performs Θ(N) pairwise swaps of elements. When thinking of pairwise swaps,

both selection and insertion sort come to mind. Selection sort does at most Θ(N) swaps, while it is

possible for insertion sort to need Θ(N2) swaps (for example, a reverse sorted array).

A, B, D. Never compares the same two elements twice. Notice for QuickSort and MergeSort that

once we do a comparison between two elements (the pivot for QuickSort and elements within a recur-

sive subarray in MergeSort), we will never compare those two elements again. For example, we won’t

compare the pivot against any other element again, and a sorted subarray will never have elements

within it compared against one another. Insertion sort is much the same, as we bubble down elements

into their respective places, comparing only against elements to the ”left” of them.

F. Runs in best case Θ(logN) time for certain inputs. The best case runtime for a sorting algo-

rithm cannot be faster than Θ(N). This is because at the very least, we need to check if all elements

are sorted, and since there are N elements, we can’t have an algorithm that sorts faster than Θ(N).

	Quicksort
	Radix Sorts
	Sort Identification
	Conceptual Comparison Sorts Extra

