
CS 61B Graphs, Heaps
Spring 2024 Discussion 08: March 11, 2024

1 Trees, Graphs, and Traversals, Oh My!
(a) Write the following traversals of the BST below.
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Solution:

Pre-order: 10 3 1 7 12 11 14 13 15

In-order: 1 3 7 10 11 12 13 14 15

Post-order: 1 7 3 11 13 15 14 12 10

Level-order (BFS): 10 3 12 1 7 11 14 13 15

(b) Write the graph below as an adjacency matrix, then as an adjacency list. What would be different if

the graph were undirected instead?
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Solution:
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Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 0 0 1 0 0 0 0

C 0 0 0 0 0 1 0

D 0 1 0 0 1 1 0

E 0 0 0 0 0 1 0

F 0 0 0 0 0 0 0

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {C}

C: {F}

D: {B, E, F}

E: {F}

F: {}

G: {F}

For the undirected version of the graph, the representations look a bit more symmetric. For your

reference, the representations are included below:

Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 1 0 1 1 0 0 0

C 0 1 0 0 0 1 0

D 1 1 0 0 1 1 0

E 0 0 0 1 0 1 0

F 0 0 1 1 1 0 1

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {A, C, D}

C: {B, F}

D: {A, B, E, F}

E: {D, F}

F: {C, D, E, G}

G: {F}
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(c) Write the order in which (1) DFS pre-order, (2) DFS post-order, and (3) BFS would visit nodes in the

same directed graph above, starting from vertex A. Break ties alphabetically.

Solution:

Pre-order: ABCFDE (G)

Post-order: FCBEDA (G)

BFS: ABDCEF (G)

Explanation:

To compute DFS, we maintain a stack of nodes, and a visited set. As soon as we add something to our

stack, we note it down for preorder. The top node in our stack represents the node we are currently on,

and the marked set represents nodes that have been visited. After we add a node to the stack, we visit

its lexicographically next unmarked child. If there is none, we pop the topmost node from the stack

and note it down for postorder. Note that there are two ways DFS could run: with restart or without;

DFS with restart is the version where if we have exhausted our stack, and still have unmarked nodes

left, we restart on the next unmarked node.

Stack (bottom-top) VisitedSet Preorder Postorder

A A A -

AB AB AB -

ABC ABC ABC -

ABCF ABCF ABCF -

ABC ABCF ABCF F

AB ABCF ABCF FC

A ABCF ABCF FCB

AD ABCFD ABCFD FCB

ADE ABCFDE ABCFDE FCB

AD ABCFDE ABCFDE FCBE

A ABCFDE ABCFDE FCBED

- ABCFDE ABCFDE FCBEDA

If DFS restarts on unmarked nodes, the following happens in the last line. Otherwise, we

do not proceed further.

Stack (bottom-top) VisitedSet Preorder Postorder

G ABCFDEG ABCFDEG FCBEDAG

For BFS, we use a queue instead of a stack. BFS does not have the notion of in-order and post-order,

so we only visit it when we remove it from the queue.
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2 Absolutely Valuable Heaps
(a) Assume that we have a binary min-heap (smallest value on top) data structure called MinHeap that has

properly implemented the insert and removeMin methods. Draw the heap and its corresponding array

representation after each of the operations below:

MinHeap<Character> h = new MinHeap<>();

h.insert('f');

h.insert('h');

h.insert('d');

h.insert('b');

h.insert('c');

h.removeMin();

h.removeMin();

Solution:

after inserting ’f’: [-, 'f']

f

after inserting ’h’: [-, 'f', 'h']

f

h

after inserting ’d’: [-, 'd', 'h', 'f']

d

h f

after inserting ’b’: [-, 'b', 'd', 'f', 'h']

b

d

h

f

after inserting ’c’: [-, 'b', 'c', 'f', 'h', 'd']

b

c

h d

f
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after removing min: [-, 'c', 'd', 'f', 'h']

c

d

h

f

after removing min: [-, 'd', 'h', 'f']

d

h f

(b) Your friendly TA Allen challenges you to create an integer max-heap without writing a whole new data

structure. Can you use your min-heap to mimic the behavior of a max-heap? Specifically, we want to

be able to get the largest item in the heap in constant time, and add things to the heap in Θ(log n)

time, as a normal max heap should.

Hint : You should treat the MinHeap as a black box and think about how you should modify the

arguments/return values of the heap functions.

Solution:

Yes. For every insert operation, negate the number and add it to the min-heap.

For a removeMax operation call removeMin on the min-heap and negate the number returned. Any

number negated twice is itself, and since we store the negation of numbers, the order is now reversed

(what used to be the max is now the min).

Small note: There’s actually one exception in Java to what we said about negation above: −2−31, the

most negative number that we can represent in Java, will not be itself when negated twice. This is

mostly due to number representation constraints in code, but you don’t need to worry about that for

this question.
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3 Trinary Search Tree
We’d like a data structure that acts like a BST (Binary Search Tree) in terms of operation runtimes but

allows duplicate values. Therefore, we decide to create a new data structure called a TST (Trinary Search

Tree), which can have up to three children, which we’ll refer to as left, middle, and right. In this setup,

we have the following invariants, which are very similar to the BST invariants:

1. Each node in a TST is a root of a smaller TST

2. Every node to the left of a root has a value “lesser than” that of the root

3. Every node to the right of a root has a value “greater than” that of the root

4. Every node to the middle of a root has a value equal to that of the root

Below is an example TST to help with visualization.
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Describe an algorithm that will print the elements in a TST in descending order. (Hint: recall that an

in-order traversal for a BST gives elements in increasing order.)

Solution:

Inorder traversal on a BST yields the sorted elements in the BST in ascending order. Therefore, the core

of the algorithm we’d like here is going to be quite similar to inorder traversal, but reversed (visit the right

child before the left child) and with the added caveat that we also must traverse through the middle children.

In essence, given the root of some TST, we reverse onto the right child subtree, then print the root’s value,

then reverse onto the middle child subtree, then finally reverse onto the left subtree. The print root value

and reverse onto the middle child steps can be swapped, because overall the order of the printed values

should be the same.

Pseudocode:

reverse(tst):

if tst is null:

return

reverse(tst.right)

print(tst.value)

reverse(tst.middle)

reverse(tst.left)
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