
CS 61B B-Trees, LLRBs, Hashing
Spring 2024 Discussion 07: March 4, 2024

1 2-3 Trees and LLRB’s
(a) Draw what the following 2-3 tree would look like after inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

(b) Now, convert the resulting 2-3 tree to a left-leaning red-black tree.



2 B-Trees, LLRBs, Hashing

(c) If a 2-3 tree has depth H (that is, the leaves are at distance H from the root), what is the maximum

number of comparisons done in the corresponding red-black tree to find whether a certain key is present

in the tree?

(d) Now, insert 9 into the LLRB Tree. Describe where you would insert this node, and what balancing

operations (rotateLeft, rotateRight, colorSwap) you’d take to balance the tree after insertion. Assume

that in the given LLRB, dotted links between nodes are red and solid links between nodes are black.

7

3

1 5

10

8



B-Trees, LLRBs, Hashing 3

2 Hashing
(a) Here are five potential implementations of the Integer class’s hashCode() method. Categorize each as

(1) invalid, (2) valid but not good, and (3) valid and good. If it is invalid, explain why. If it is valid

but not good, point out a flaw or disadvantage. For the 2nd implementation, note that intValue() will

return that Integer’s number value as an int, and assume that Integer’s equals method checks for

equality of the compared Integers’ intValues.

public int hashCode() {

return -1;

}

public int hashCode() {

return intValue() * intValue();

}

public int hashCode() {

return super.hashCode(); // Object's hashCode() is based on memory location

}

public int hashCode() {

return (int) (new Date()).getTime(); // returns the current time as an int

}

public int hashCode() {

return intValue() + 3;

}

(b) For each of the following questions, answer Always, Sometimes, or Never.

1. If you were able to modify a key that has been inserted into a HashMap would you be able to

retrieve that entry again later? For example, let us suppose you were mapping ID numbers to

student names, and you did a put(303, "Elisa") operation. Now, let us suppose we somehow

went to that item in our HashMap and manually changed the key to be 304. If we later do get(304),

will we be able to find and return "Elisa"? Explain.

2. When you modify a value that has been inserted into a HashMap will you be able to retrieve that

entry again? For example, in the above scenario, suppose we first inserted put(303, "Elisa") and

then changed that item’s value from "Elisa" to "William". If we later do get(303), will we be

able to find and return "William"? Explain.



4 B-Trees, LLRBs, Hashing

3 A Side of Hash Browns
We want to map food items to their yumminess. We want to be able to find this information in constant

time, so we’ve decided to use Java’s built-in HashMap class! Here, the key is an String representing the food

item and the value is an int yumminess rating.

For simplicity, let’s say that here a String’s hashcode is the first letter’s position in the alphabet (A = 0, B =

1... Z = 25). For example, the String "Hashbrowns" starts with ”H”, and ”H” is 7th letter in the alphabet

(0 indexed), so the hashCode would be 7. Note that in reality, a String has a much more complicated

hashCode implementation.

Our HashMap will compute the index as the key’s hashcode value modulo the number of buckets in our

HashMap. Assume the initial size is 4 buckets, and we double the size of our HashMap as soon as the load

factor reaches 3/4. If we try to put in a duplicate key, simply replace the value associated with that key

with the new value.

(a) Draw what the HashMap would look like after the following operations.

HashMap<String, Integer> hm = new HashMap<>();

hm.put("Hashbrowns", 7);

hm.put("Dim sum", 10);

hm.put("Escargot", 5);

hm.put("Brown bananas", 1);

hm.put("Burritos", 2);

hm.put("Buffalo wings", 8);

hm.put("Banh mi", 9);

hm.put("Burritos", 10);

(b) Do you see a potential problem here with the behavior of our HashMap? How could we solve this?


	2-3 Trees and LLRB's
	Hashing
	A Side of Hash Browns

