
CS 61B ADTs, Asymptotics II, BSTs
Spring 2024 Discussion 06: February 26, 2024

1 ADT Matchmaking
Match each task to the best Abstract Data Type for the job and justify your answer (ie. explain why other

options would be less ideal). The options are List, Map, Queue, Set, and Stack. Each ADT will be used

once.

1. You want to keep track of all the unique users who have logged on to your system.

2. You are creating a version control system and want to associate each file name with a Blob.

3. We are grading a pile of exams and want to grade starting from the top of the pile (Hint: what order

do we pile papers in? ).

4. We are running a server and want to service clients in the order they arrive.

5. We have a lot of books at our library and we want our website to display them in some sorted order.

We have multiple copies of some books and we want each listing to be separate.

Some geometric sums you may find helpful in the rest of the worksheet:

1 + 2 + 3 + 4 + 5 + · · ·+N ∈ Θ(N2)

1 + 2 + 4 + 8 + 16 + · · ·+N ∈ Θ(N)

General case:

1 + 2 + 3 + 4 + 5 + · · ·+ f(N) ∈ Θ(f(N)2)

1 + 2 + 4 + 8 + 16 + · · ·+ f(N) ∈ Θ(f(N))
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2 I Am Speed
(a) For each code block below, fill in the blank(s) so that the function has the desired runtime. Do not

use any commas. If the answer is impossible, just write ”impossible” in the blank. Assume that

System.out.println runs in constant time. You may use Java’s Math.pow(x, y) to raise x to the power

of y.

// Desired Runtime: Θ(N)

public static void f1(int N) {

for (int i = 1; i < N; ____________){

System.out.println("hi Dom");

}

}

// Desired Runtime: Θ(logN)

public static void f2(int N) {

for (int i = 1; i < N; ____________) {

System.out.println("howdy Ergun");

}

}

// Desired Runtime: Θ(1)

public static void f3(int N) {

for (int i = 1; ______________; i += 1) {

System.out.println("hello Anniyat");

}

}

// Desired Runtime: Θ(2N )

// This one is tricky! Hint: think about the dominating term in 1 + 2 + 4 + 8 + ... + f(N)

public static void f4(int N) {

for (int i = 1; ___________________; i *= 2) {

for (int j = 0; j < i; j += 1) {

System.out.println("what's up Alyssa");

}

}

}
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(b) Extra Give the worst case and best case running time in Θ(·) notation in terms of M and N . Assume

that kachow() runs in Θ(N2) time and returns a boolean.

1 for (int i = 0; i < N; i += 1) {

2 for (int j = 1; j <= M; ) {

3 if (kachow()) {

4 j += 1;

5 } else {

6 j *= 2;

7 }

8 }

9 }

10
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3 Re-cursed with Asymptotics!
(a) What is the runtime of the code below in terms of n?

1 public static int curse(int n) {

2 if (n <= 0) {

3 return 0;

4 } else {

5 return n + curse(n - 1);

6 }

7 }

8

(b) Can you find a runtime bound for the code below? We can assume the System.arraycopy method takes

Θ(N) time, where N is the number of elements copied. The official signature is System.arrayCopy(Object

sourceArr, int srcPos, Object dest, int destPos, int length). Here, srcPos and destPos are

the starting points in the source and destination arrays to start copying and pasting in, respectively,

and length is the number of elements copied.

1 public static void silly(int[] arr) {

2 if (arr.length <= 1) {

3 System.out.println("You won!");

4 return;

5 }

6

7 int newLen = arr.length / 2;

8 int[] firstHalf = new int[newLen];

9 int[] secondHalf = new int[newLen];

10

11 System.arraycopy(arr, 0, firstHalf, 0, newLen);

12 System.arraycopy(arr, newLen, secondHalf, 0, newLen);

13

14 silly(firstHalf);

15 silly(secondHalf);

16 }

17

18

(c) Given that exponentialWork runs in Θ(3N ) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {

if (N <= 1) {

return;

}

ronnie(N - 2);

ronnie(N - 2);

ronnie(N - 2);

exponentialWork(N); // Runs in Θ(3N ) time

}
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4 BST Asymptotics
Below we define the find method of a BST (Binary Search Tree) as in lecture, which returns the BST rooted

at the node with key sk in our overall BST. In this setup, assume a BST has a key (the value of the tree root)

and then pointers to two other child BSTs, left and right.

1 public static BST find(BST tree, Key sk) {

2 if (tree == null) {

3 return null;

4 }

5 if (sk.compareTo(tree.key) == 0) {

6 return tree;

7 } else if (sk.compareTo(tree.key) < 0) {

8 return find(tree.left, sk);

9 } else {

10 return find(tree.right, sk);

11 }

12 }

(a) Assume our BST is perfectly bushy. What is the runtime of a single find operation in terms of N, the

number of nodes in the tree? Can we generalize the runtime of find to a tight bound?

(b) Say we have an empty BST and want to insert the keys [6, 2, 5, 9, 0, -3] (in some order). In what

order should we insert the keys into the BST such that the runtime of a single find operation after all

keys are inserted is O(N)? Draw out the resulting BST.


