
CS 61B Introduction to Java
Spring 2024 Discussion 01: January 22, 2024

1 Welcome to CS 61B
The semester has just started and the CS 61B staff are adding some finishing touches to the course infras-

tructure, but they need your help! You’ll need to use the CS61BStudent class as defined in the slides, copied

below for your convenience.

public class CS61BStudent { // Class Declaration

public int idNumber; // Instance Variables

public int grade;

public static String instructor = "Hug"; // Class (Static) Variables

public CS61BStudent(int id) { // Constructor

this.idNumber = id;

this.grade = 100;

}

public boolean watchLecture() { // Instance Method

// Returns whether the student actually watched the lecture

...

}

public static String getInstructor() { // Static Method

...

}

}

2 Introduction to Java

All of the following parts involve filling in the CS61B class on page 3. You may use any of the types discussed

in lecture. It’s up to you to decide which types would work best for each variable and method signature!

(a) We need to declare (also possibly instantiate and assign!) a few important variables. Recall that

variables in the body of the class are compiled even before the constructor fully creates an instance of

the class; in other words, carefully consider what information we have access to. Define the following

variables within the class:

1. university: the name of the university, which should be “UC Berkeley” for all semesters of

CS61B

2. semester: the semester that the course is being taught

3. students: the CS61BStudents enrolled in this semester’s CS61B. Remember that the course has a

fixed capacity!

(b) Each CS61B instance represents one semester of the course. Create a constructor that takes in a capacity

for the maximum number of students enrollable, an array signups consisting of the students who signed

up for the course (in order), and the semester (e.g. “Fall 2023”).

In the constructor, we want to enroll capacity students from signups and initialize the semester in-

stance variable.

Hint: We have both a constructor variable and instance variable named semester. How can we distin-

guish them?

(c) Let’s now implement some highly-requested features as methods. Consider what the method should

return, its argument types, whether it should be static, etc.

1. makeStudentsWatchLecture: makes every CS61BStudent enrolled in this semester of the course

watch lecture (excluding waitlisted students). Returns the total number of students who actually

watched lecture. Recall that watchLecture in the Student class returns whether an individual

student actually watched the lecture!

2. changeUniversity: takes in a new university name newUniversity. Changes the university for

all semesters of CS61B to newUniversity

(d) Modify your existing implementation to support expand, which allows our infrastructure to handle

course expansions. Whenever the course expands, students that were originally waitlisted should be

enrolled, up until the new capacity. Assume that the new capacity is always less than or equal to the

number of students who signed up.

Challenge: Support course expansions without additional usages of new.

Introduction to Java 3

Solution:

public class CS61B {

// Variables (part a)

public static String university = "UC Berkeley";

public String semester;

public CS61BStudent[] students;

// Constructor (part b)

public CS61B(int capacity, CS61BStudent[] signups, String semester) {

this.semester = semester;

this.students = new CS61BStudent[capacity];

for (int i = 0; i < capacity; i++) {

this.students[i] = signups[i];

}

}

// Methods (part c)

/** Makes every CS61BStudent enrolled in this semester of the course watch lecture.

Returns the total number of students who actually watched lecture.

*/

public int makeStudentsWatchLecture() {

int total = 0;

for (CS61BStudent student : students) {

boolean watched = student.watchLecture();

if (watched) {

total += 1;

}

}

return total;

}

/** Takes in a new university name newUniversity and changes the university

for all semesters of CS61B to newUniversity. */

public static void changeUniversity(String newUniversity) {

university = newUniversity;

}

/** Expands the course to the given capacity. */

public void expand(int newCapacity) {

... // see next page

}

}

4 Introduction to Java

(d): Recall that arrays have fixed capacity, so we can’t simply append to the end of the students array.

One possibility is to keep an additional instance variable to keep track of all the signups, and create

an entirely new students array every time the course expands, enrolling newCapacity students in a

similar fashion to the constructor.

Challenge: Instead of only adding the enrolled students in the constructor, add all students in signups

(or just have a reference to signups). We add an instance variable capacity to keep track of the

current capacity of the course. All of the methods that iterate through the students array should

iterate up to capacity instead of the entire length of the array. Because signups was in order, this is

equivalent to only iterating over the enrolled students. The code might look like the following:

public class CS61B {

public static String university = "UC Berkeley";

public String semester;

public CS61BStudent[] students;

public int capacity;

public CS61B(int capacity, CS61BStudent[] signups, String semester) {

this.semester = semester;

this.students = signups;

this.capacity = capacity;

}

// Methods (part c)

/** Makes every CS61BStudent enrolled in this semester of the course watch lecture.

Returns the total number of students who actually watched lecture.

*/

public int makeStudentsWatchLecture() {

int total = 0;

for (int i = 0; i < capacity; i++) {

boolean watched = students[i].watchLecture();

if (watched) {

total += 1;

}

}

return total;

}

...

/** Expands the course to the given capacity. */

public void expand(int newCapacity) {

this.capacity = newCapacity;

}

}

	Welcome to CS 61B

