
CS 61B More Sorting
Spring 2024 Exam-Level 12: April 15, 2024

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the best case and worst case

runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N
100 , we perform insertion sort on them.

Best Case: Θ( ), Worst Case: Θ( )

(b) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ( ), Worst Case: Θ( )

(c) We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but must

maintain constant space complexity.

Best Case: Θ( ), Worst Case: Θ( )

(d) We run an optimal sorting algorithm of our choosing knowing:

� There are at most N inversions.

Best Case: Θ( ), Worst Case: Θ( )

� There is exactly 1 inversion.

Best Case: Θ( ), Worst Case: Θ( )

� There are exactly N(N−1)
2 inversions

Best Case: Θ( ), Worst Case: Θ( )
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2 MSD Radix Sort
Recursively implement the method msd below, which runs MSD radix sort on a List of Strings and returns

a sorted List of Strings. For simplicity, assume that each string is of the same length. You may not need

all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort, but any stable sort works!

For the subroutine here, you may use the stableSort method, which sorts the given list of strings in place,

comparing two strings by the given index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this list between the specified

fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the specified collection to the

end of this list, in the order that they are returned by the specified collection’s iterator.

1 public static List<String> msd(List<String> items) {

2

3 return __________________________________________________________________;

4 }

5

6 private static List<String> msd(List<String> items, int index) {

7

8 if (_____________________________________________________________________) {

9 return items;

10 }

11 List<String> answer = new ArrayList<>();

12 int start = 0;

13

14 _________________________________________________________________________;

15 for (int end = 1; end <= items.size(); end += 1) {

16

17 if (_________________________________________________________________) {

18

19 _________________________________________________________________;

20

21 _________________________________________________________________;

22

23 _________________________________________________________________;

24 }

25 }

26 return answer;

27 }

28 /* Sorts the strings in `items` by their character at the `index` index alphabetically. */

29 private static void stableSort(List<String> items, int index) {

30 // Implementation not shown

31 }
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3 Shuffled Exams
For this problem, we will be working with Exam and Student objects, both of which have only one attribute:

sid, which is a integer like any student ID.

PrairieLearn thought it was ready for the final. It had meticulously created two arrays, one of Exams and the

other of Students, and ordered both on sid such that the ith Exam in the Exams array has the same sid as the

ith Student in the Students array. Note the arrays are not necessarily sorted by sid. However, PrairieLearn

crashed, and the Students array was shuffled, but the Exams array somehow remained untouched.

Time is precious, so you must design a O(N) time algorithm to reorder the Students array appropriately

without changing the Exams array!

Hint: While you cannot modify the Exams array, you can sort a copy of the Exams array with some added

information. Think about what information would be useful to put back the Students array in the same

order as the exams.

.


