
CS 61B Graphs II, Tries
Spring 2024 Exam-Level 10: April 1, 2024

1 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

(a) For each subpart below, select the correct option and justify your answer. If you select “never” or

“always,” provide a short explanation. If you select “sometimes”, provide two graphs that fulfill the

given properties — one with multiple MSTs and one without. Assume G is an undirected, connected

graph with at least 3 vertices.

1. If some of the edge weights are identical, there will

⃝ never be multiple MSTs in G.

⃝ sometimes be multiple MSTs in G.

⃝ always be multiple MSTs in G.

Justification:

2. If all of the edge weights are identical, there will

⃝ never be multiple MSTs in G.

⃝ sometimes be multiple MSTs in G.

⃝ always be multiple MSTs in G.

Justification:

(b) Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge

weights are identical. Find the maximum and minimum number of MSTs in G and explain your

reasoning.

Minimum: _________

Maximum: _________

Justification:



2 Graphs II, Tries

(c) It is possible that Prim’s and Kruskal’s find different MSTs on the same graph G (as an added exercise,

construct a graph where this is the case!). Given any graph G with integer edge weights, modify the

edge weights of G to ensure that (1) Prim’s and Kruskal’s will output the same results, and (2) the

output edges still form a MST correctly in the original graph. You may not modify Prim’s or Kruskal’s,

and you may not add or remove any nodes/edges.

Hint: Look at subpart 1 of part a.

2 Topological Sorting for Cats
The big brain cat, Duncan, is currently studying topological sorts! However, he has a variety of curiosities

that he wishes to satisfy.

(a) Describe at a high level in plain English how to perform a topological sort using an algorithm we already

know (hint: it involves DFS), and provide the time complexity.

(b) Duncan came up with another way to possibly do topological sorts, and he wants you to check him on

its correctness and tell him if it is more efficient than our current way! Let’s derive the algorithm.

1. First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one

source node, and at least one sink node.

2. Duncan wishes to extend from the Graph class to create a DAG class. He wants to eventually add

a method that enables topological sorting, but needs to write some helper methods first! Complete

the following instance methods computeInDegrees and findAllSourceNodes().



Graphs II, Tries 3

public class Graph {

public Graph(int V) // Create empty graph with v vertices, numbered 0 to V - 1

public void addEdge(int v, int w) // Adds edge from v to w

Iterable<Integer> adj(int v) // Gets vertices adjacent to v

int V() // Number of vertices

int E() // Number of edges

}

public class DAG extends Graph {

// Computes the number of incoming edges to a vertex

public int[] computeInDegrees() {

int[] indegree = ______________________;

for (_________________________________) {

for (__________________________) {

______________________________

}

}

return indegree;

}

// Finds all source nodes in the graph

public List<Integer> findAllSourceNodes(int[] indegree) {

List<Integer> sources = new ArrayList<>();

for (_________________________________) {

if (__________________________) {

__________________________

}

}

return ___________________;

}

}

Runtime of computeInDegrees is:

Runtime of findAllSourceNodes is:



4 Graphs II, Tries

3. Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous

parts, complete the topologicalSort() method. What is its runtime?

public class DAG extends Graph {

public int[] computeInDegrees() { ... }

public List<Integer> findAllSourceNodes(int[] indegree) { ... }

public List<Integer> topologicalSort() {

List<Integer> sorted = new ArrayList<>();

____________________________________________

// Hint: add elements from another iterable here

Queue<Integer> sources = new ArrayDeque<>(_______________________);

while (________________________________) {

int source = sources.poll();

______________________________________

for (______________________________________) {

______________________________________

if (________________________) {

________________________

}

}

}

return sorted;

}

}

Runtime of topologicalSort is:

4. Venti, the bard from Mondstadt is allergic to cats. He wanted to trick Duncan and created a

DAG object, but it actually represents a graph with a cycle! How can you modify the method

topologicalSort() above to detect whether the graph has a cycle?



Graphs II, Tries 5

3 A Wordsearch
Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain

English) to solve the wordsearch in O(N3). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, ”be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an

example wordsearch. Note that the below wordsearch doesn’t follow the precise specification of an N by N

wordsearch with N words, but your algorithm should work on this wordsearch regardless.

Example Wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that

longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or null

if no prefix exists.

https://algs4.cs.princeton.edu/52trie/TrieST.java.html

