
CS 61B Graphs, Heaps
Spring 2024 Exam-Level 08: March 11, 2024

1 Graph Conceptuals
(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

Solution: False. The graph must be connected.

2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.

Solution: True. Say an edge connects u and v. Both u and v will look at the other one through

this edge when it’s their turn.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start vertex. For

any two vertices u, v in the fringe (recall that the fringe in BFS is a queue), |d(u)−d(v)| is always

less than 2.

Solution: True. Suppose this was not the case. Then, we could have a vertex 2 edges away

and a vertex 4 edges away in the fringe at the same time. But, the only way to have a vertex 4

edges away is if a vertex 3 edges away was removed from the fringe. We see this could never occur

because the vertex 2 edges away would be removed before the vertex 3 edges away!

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and

false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

Solution: We do a depth first search traversal through the graph. While we recurse, if we visit a node

that we visited already, then we’ve found a cycle. Assuming integer labels, we can use something like

a visited boolean array to keep track of the elements that we’ve seen, and while looking through a

node’s neighbors, if visited gives true, then that indicates a cycle.

However, since the graph is undirected, if an edge connects vertices u and v, then u is a neighbor of v,

and v is a neighbor of u. As such, if we visit v after u, our algorithm will claim that there is a cycle

since u is a visited neighbor of v. To address this case, when we visit the neighbors of v, we should

ignore u. To implement this in code, we could add the parent as another parameter in the method call.

In the worst case, we have to explore at most V edges before finding a cycle (number of edges doesn’t

matter). So, this runs in Θ(V).

Pseudocode is provided below (for a disconnected graph, we should call find cycle on each component).

1 find_cycle(v, parent=-1):

2 visited[v] = true

3 for (v, w) in G:

4 if !visited[w]:

5 if find_cycle(w, v):

6 return True

7 else if w != parent:

8 return True

9 return False

2 Graphs, Heaps

2 Fill in the Blanks
Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the

entirety of this question, assume the elements in the min-heap are distinct.

1. removeMin has a best case runtime of and a worst case runtime of .

2. insert has a best case runtime of and a worst case runtime of .

3. A or traversal on a min-heap may output the elements in

sorted order. Assume there are at least 3 elements in the min-heap.

4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in

places in the heap. (Feel free to draw the heap in the space below.)

5. Given a min-heap with 2N − 1 distinct elements, for an element

� to be on the second level it must be less than element(s) and greater than

element(s).

� to be on the bottommost level it must be less than element(s) and greater

than element(s).

Hint: A complete binary tree (with a full last-level) has 2N − 1 elements, with N being the number

of levels. (Feel free to draw the heap in the space below.)

Solution:

1. removeMin has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

2. insert has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

3. A pre order or level order traversal on a min-heap can output the elements in sorted order.

Explanation: The smallest item of a min heap is at the top, so whatever traversal we choose must

output the top element first in a complete binary tree. Only preorder and level-order have this property.

4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in 14 places in the

heap.

Explanation: The 4th smallest item can be on the 2nd, 3rd, or 4th level of the heap.

5. Given a min-heap with 2N − 1 distinct elements, for an element -

� to be on the second level it must be less than 2(N−1)−2 element(s) and greater than 1 element(s).

� to be on the bottommost level it must be less than 0 element(s) and greater than N - 1 element(s).

(must be greater than the elements on its branch)

Explanation: An element on the second level must be larger than the root and less than the elements in its

subtree. There are 2(N−1) − 2 elements in the subtree of an element on the second level: half the elements

in the tree minus the root, then subtracting off the node itself.

An element on the bottom level must be greater than all elements on the path from itself to the root. A min

heap with 2N − 1 elements has N levels, so there are N - 1 items above it on a path to the root.

Graphs, Heaps 3

3 Heap Mystery
We are given the following array representing a min-heap where each letter represents a unique number.

Assume the root of the min-heap is at index zero, i.e. A is the root. Our task is to figure out the numeric

ordering of the letters. Therefore, there is no significance of the alphabetical ordering. i.e. just because B

precedes C in the alphabet, we do not know if B is less than or greater than C.

Array: [-, A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an

insert. The resulting state of the min-heap is shown below.

Array: [-, A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first operation has already been

filled in for you!

Hint: Which elements are gone? Which elements are newly added? Which elements are removed and

then added back?

1. removeMin()

2.

3.

4.

Solution:

1. removeMin()

2. insert(X)

3. removeMin()

4. insert(A)

Explanation: We know immediately that A was removed. Then, after looking at the final state of the

min-heap, we see that C was removed. Then, for A to remain in the min-heap, we see that A must have

been inserted afterwards. And, after seeing a new value X in the min-heap, we see that X must have

been inserted as well. We just need to determine the relative ordering of the insert(X) in between the

operations removeMin() and insert(A), and we see that the insert(X) must go before both.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We recommend considering which

elements were compared to reach the final array.

1. X D

2. X C

3. B C

4. G X

Solution:

1. X ? D

2. X > C

4 Graphs, Heaps

3. B > C

4. G < X

Reasoning:

1. X is never compared to D

2. X must be greater than C since C is removed after X’s insertion.

3. B must also be greater than C otherwise the second call to removeMin would have removed B

4. X must be greater than G so that it can be ”promoted” to the top after the removal of C. It needs to

be promoted to the top to land in its new position.

