CS 61B
 Graphs, Heaps

Spring 2024
Exam-Level 08: March 11, 2024

1 Graph Conceptuals

(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with n vertices has $n-1$ edges, it must be a tree.
2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.
3. In BFS, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe (recall that the fringe in BFS is a queue), $|d(u)-d(v)|$ is always less than 2.
(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

2 Fill in the Blanks

Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are distinct.

1. removeMin has a best case runtime of \qquad and a worst case runtime of \qquad .
2. insert has a best case runtime of \qquad and a worst case runtime of \qquad -
3. A \qquad or \qquad traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.
4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in \qquad places in the heap. (Feel free to draw the heap in the space below.)
5. Given a min-heap with $2^{N}-1$ distinct elements, for an element

- to be on the second level it must be less than \qquad element(s) and greater than
\qquad element(s).
- to be on the bottommost level it must be less than \qquad element(s) and greater than \qquad element(s).

Hint: A complete binary tree (with a full last-level) has $2^{N}-1$ elements, with N being the number of levels. (Feel free to draw the heap in the space below.)

3 Heap Mystery

We are given the following array representing a min-heap where each letter represents a unique number. Assume the root of the min-heap is at index zero, i.e. A is the root. Our task is to figure out the numeric ordering of the letters. Therefore, there is no significance of the alphabetical ordering. i.e. just because B precedes C in the alphabet, we do not know if B is less than or greater than C .

Array: $[-, ~ A, ~ B, ~ C, ~ D, ~ E, ~ F, ~ G] ~$
Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an insert. The resulting state of the min-heap is shown below.

Array: [-, A, E, B, D, X, F, G]
(a) Determine the operations executed and their appropriate order. The first operation has already been filled in for you!

Hint: Which elements are gone? Which elements are newly added? Which elements are removed and then added back?

1. removeMin()
2. \qquad
3. \qquad
4. \qquad
(b) Fill in the following comparisons with either $>,<$, or ? if unknown. We recommend considering which elements were compared to reach the final array.
5. X \qquad D
6. X \qquad C
7. B \qquad C
8. G \qquad X
