
CS 61B B-Trees, LLRBs, Hashing
Spring 2024 Exam-Level 07: March 4, 2024

1 LLRB Insertions
Given the LLRB below, perform the following insertions and draw the final state of the LLRB. In addition,

for each insertion, write the balancing operations needed in the correct order (rotate right, rotate left, or

color flip). If no balancing operations are needed, write ”Nothing”. Assume that the link between 5 and 3

is red and all other links are black at the start.

5

3

1 4

9

(a) 1. Insert 7

2. Insert 6

3. Insert 2

4. Insert 8

5. Insert 8.5

6. Final state

Solution: For a visualization of the process, see here

1. Insert 7

� Nothing

2. Insert 6

� rotateRight(9)

https://docs.google.com/presentation/d/1uWEnm4L2cNTmFNeT4qqATHWRA9tbYbcV78uJRFIZtqw/edit##slide=id.g8336e82847_0_2584


2 B-Trees, LLRBs, Hashing

� colorFlip(7)

� colorFlip(5)

3. Insert 2

� rotateLeft(1)

4. Insert 8

� Nothing

5. Insert 8.5

� rotateLeft(8)

� rotateRight(9)

� colorFlip(8.5)

� rotateLeft(7)

6. Final state:

5

3

2

1

4

8.5

7

6 8

9

(b) Convert the final LLRB to its corresponding 2-3 Tree.

Solution:

5

3

1 2 4

7 8.5

6 8 9



B-Trees, LLRBs, Hashing 3

2 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int semester;

3 String name;

4 TA(String name, int semester) {

5 this.name = name;

6 this.semester = semester;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return semester;

16 }

17 }

Assume that the hashCode of a TA object returns semester, and the equals method returns true if and only

if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as depicted in lecture. The

ECHashMap instance begins at size 4 and, for simplicity, does not resize. Draw the contents of map after the

executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA jasmine = new TA("Jasmine the GOAT", 10);

3 TA noah = new TA("Noah", 20);

4 map.put(jasmine, 1);

5 map.put(noah, 2);

6

7 noah.semester += 2;

8 map.put(noah, 3);

9

10 jasmine.name = "Nasmine";

11 map.put(noah, 4);

12

13 jasmine.semester += 2;

14 map.put(jasmine, 5);

15

16 jasmine.name = "Jasmine";

17 TA cheeseguy = new TA("Sam", 24);

18 map.put(cheeseguy, 6);

Solution:



4 B-Trees, LLRBs, Hashing

Explanation:

Line 4: jasmine has semester value 10. 10 % 4 = 2, so jasmine is placed in bucket 2 with value 1.

0: [], 1: [], 2: [(jasmine, 1)], 3: []

Line 5: noah is placed in bucket 0 with value 2.

0: [(noah, 2)], 1: [], 2: [(jasmine, 1)], 3: []

Line 7: Increasing the semester value of noah does not cause it to be rehashed! (This is why modify-

ing objects in a Hashmap is dangerous–it can change the hashcode of your object and make it impossible to

find which bucket it belongs to).

Line 8: noah now has semester 4, so bucket 2 also has a node pointing to noah, with value 3. (Note that

the two noahs refer to the same object).

0: [(noah, 2)], 1: [], 2: [(jasmine, 1), (noah, 3)], 3: []

Line 11, 12: noah with semester 22 hashes to bucket 2. However, since we have changed jasmine’s

name to be "Nasmine", noah.equals(jasmine) returns true. Since we are hashing a key that is already

present in the dictionary according to .equals, we replace jasmine’s old value with the new value, 4.

0: [(noah, 2)], 1: [], 2: [(jasmine, 4), (noah, 3)], 3: []

Line 13, 14: jasmine with semester 12 hashes to bucket 0. However, since we have changed jasmine’s name

to be "Nasmine", jasmine.equals(noah) returns true. Since we are hashing a key that is already present in

the dictionary according to .equals, we replace noah’s old value with the new value, 5.

0: [(noah, 5)], 1: [], 2: [(jasmine, 4), (noah, 3)], 3: []

Line 16, 17, 18: cheeseGuy hashes to bucket 0. cheeseGuy.equals(noah) returns false, so we add a

new node after noah with value 6.

0: [(noah, 5), (cheeseGuy, 6)], 1: [], 2: [(jasmine, 4), (noah, 3)], 3: []



B-Trees, LLRBs, Hashing 5

3 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors and briefly explain why

they are incorrect and in which situations would the bug cause problems.

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

Solution:

Although equal objects will have the same hashcode, but the problem here is that hashCode() is not deter-

ministic. This may result in weird behaviors (e.g. the element getting lost) when we try to put or access

elements.

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }

Solution: The problem with this hashCode() is that not all equal objects have the same hashcode. This

may produce unexpected behavior, e.g. multiple ”equal” objects may be exist in different buckets in the

HashMap, the containsKey operation may return false, etc. One key thing to remember is that when we

override the equals() method, we have to also override the hashCode() method to ensure equal objects have

the same hashCode.


