
CS 61B Asymptotics, Disjoint Sets
Spring 2024 Exam-Level 05: February 19, 2024

1 Asymptotics Introduction
Give the runtime of the following functions in Θ notation. Your answer should be as simple as possible with

no unnecessary leading constants or lower order terms.

private void f1(int N) {

for (int i = 1; i < N; i++) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 1.0");

}

}

}

Θ(___)

private void f2(int N) {

for (int i = 1; i < N; i *= 2) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 2.0");

}

}

}

Θ(___)

Solution:

private void f1(int N) {

for (int i = 1; i < N; i++) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 1.0");

}

}

}

Θ(N2)

private void f2(int N) {

for (int i = 1; i < N; i *= 2) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 2.0");

}

}

}

Θ(N)

Explanation (1): The inner loop does up to i work each time, and the outer loop increments i each time.

Summing over each loop, we get that 1 + 2 + 3 + 4 + . . . +N = Θ(N2).

Explanation (2): The inner loop does i work each time, and we double i each time until reaching N .

1 + 2 + 4 + 8 + . . . +N = Θ(N)

2 Disjoint Sets
For each of the arrays below, write whether this could be the array representation of a weighted quick union

with path compression and explain your reasoning. Break ties by choosing the smaller integer to be

the root.

i: 0 1 2 3 4 5 6 7 8 9

------------------------------------------

A. a[i]: 1 2 3 0 1 1 1 4 4 5

B. a[i]: 9 0 0 0 0 0 9 9 9 -10

C. a[i]: 1 2 3 4 5 6 7 8 9 -10

D. a[i]: -10 0 0 0 0 1 1 1 6 2

E. a[i]: -10 0 0 0 0 1 1 1 6 8
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F. a[i]: -7 0 0 1 1 3 3 -3 7 7

Solution: There are three criteria here that invalidates a representation:

(1) If there is a cycle in the parent-link.

(2) For each parent-child link, the tree rooted at the parent is smaller than the tree rooted at the child before

the link (you would have merged the other way around).

(3) The height of the tree is greater than log2 n, where n is the number of elements.

Therefore, we have the following verdicts.

A. Impossible: has a cycle 0-1, 1-2, 2-3, and 3-0 in the parent-link representation.

B. Impossible: the nodes 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; hence, 0 would not link to 9

because 0 is the root of the larger tree.

C. Impossible: tree rooted at 9 has height 9 >log2 10.

D. Possible: 8-6, 7-1, 6-1, 5-1, 9-2, 3-0, 4-0, 2-0, 1-0.

E. Impossible: tree rooted at 0 has height 4 >log2 10.

F. Impossible: tree rooted at 0 has height 3 >log2 7.
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3 Asymptotics of Weighted Quick Unions
Note: for all big Ω and big O bounds, give the tightest bound possible.

(a) Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?

Ω(______), O(______)

2. What is the runtime, in big Ω and big O, of connect?

Ω(______), O(______)

Solution:

1. Ω(1), O(log(N))

2. Ω(1), O(log(N))

In the best-case, if we’re checking if a and b are connected, a is the root, and b is a node directly

below the root. This means we only have to traverse one edge of the tree, which is constant time. In

the worst-case, we have to traverse the entire height of the tree, and Weighted Quick Union gives us

a worst-case height of logN , hence the upper-bound of O(logN). Similar logic applies to the connect

method.

(b) Suppose we add the method addToWQU to a WQU without path compression. The method takes in a list

of elements and connects them in a random order, stopping when all elements are connected. Assume

that all the elements are disconnected before the method call.

1 void addToWQU(int[] elements) {

2 int[][] pairs = pairs(elements);

3 for (int[] pair: pairs) {

4 if (size() == elements.length) {

5 return;

6 }

7 connect(pair[0], pair[1]);

8 }

9 }

The pairs method takes in a list of elements and generates all possible pairs of elements in a random

order. For example, pairs([1, 2, 3]) might return [[1, 3], [2, 3], [1, 2]] or [[1, 2], [1, 3],

[2, 3]].

The size method calculates the size of the largest component in the WQU.

Assume that pairs and size run in constant time.

What is the runtime of addToWQU in big Ω and big O?

Ω(______), O(______)

Hint: Consider the number of calls to connect in the best case and worst case. Then, consider the

best/worst case time complexity for one call to connect.
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Solution: Ω(N), O(N2 log(N))

Note that the if-statement terminates the method when the disjoint set becomes fully connected. The

best case occurs when there is a sequence of pairs such that each connect() operation takes constant

time and the tree becomes connected as quickly as possible. This will happen if we have a sequence

(0, 1), (0, 2), ..., (0, N − 1), which consists of N − 1 operations each taking constant time (ie. the best

case for connect from part a). Note that long running-times occur when an element (e.g. 0) is not

connected for many operations, and in the worst-case, 0 is not connected until the last N operations.

This results in a tree of height logN and requires up to N2 −N + 1 iterations.

(c) Let us define a matching size connection as connecting two components in a WQU of equal size.

For instance, suppose we have two trees, one with values 1 and 2, and another with the values 3 and 4.

Calling connect(1, 4) is a matching size connection since both trees have 2 elements.

What is the minimum and maximum number of matching size connections that can occur after

executing addToWQU. Assume N, i.e. elements.length, is a power of two. Your answers should be exact.

minimum: _____, maximum: _____

Solution: minimum: 1, maximum: N - 1

The minimum number occurs for the sequence above, where there is only one matching size connection:

(0, 1). The maximum number is a bit more tricky, but occurs if we pairwise-connect the elements

together, then pairwise connect those, and so on. An example for N=8 elements is as follows: (0, 1),

(2, 3), (4, 5), (6, 7), (0, 2), (4, 6), (0, 4). In general, there are N/2 matching-size connections of size 1,

N/4 matching-size connections of size 2, and so on, up until one matching-size connection of size N/2.

This is the sum N/2 +N/4 +N/8 + ...+ 2 + 1, which simplifies to N − 1.
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