CS 61B

Spring 2024

Asymptotics, Disjoint Sets

Exam-Level 05: February 19, 2024

1 Asymptotics Introduction

Give the runtime of the following functions in Θ notation. Your answer should be as simple as possible with no unnecessary leading constants or lower order terms.

```
private void f1(int N) { }\quad\mathrm{ private void f2(int N) {
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < i; j++) {
            System.out.println("shreyas 1.0");
        }
    }
}
\Theta(___)
```

```
    for (int i = 1; i < N; i *= 2) {
```

 for (int i = 1; i < N; i *= 2) {
 for (int j = 1; j < i; j++) {
 for (int j = 1; j < i; j++) {
 System.out.println("shreyas 2.0");
 System.out.println("shreyas 2.0");
 }
 }
 }
 }
 }
}
\Theta(___)

```
\Theta(___)
```


2 Disjoint Sets

For each of the arrays below, write whether this could be the array representation of a weighted quick union with path compression and explain your reasoning. Break ties by choosing the smaller integer to be the root.

$$
\begin{array}{lllllllllll}
\text { i: } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

A. a[i]: $1 \begin{array}{llllllllll} & 2 & 3 & 0 & 1 & 1 & 1 & 4 & 4 & 5\end{array}$
B. $a[i]: \quad 9 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 9 \quad 9 \quad 9-10$
C. $a[i]: \begin{array}{llllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}-10$
D. $a[i]:-10 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 6$
E. a[i]: $-10 \begin{array}{llllllllll} & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 6 & 8\end{array}$

3 Asymptotics of Weighted Quick Unions

Note: for all big Ω and big O bounds, give the tightest bound possible.
(a) Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?
$\Omega($ \qquad), $O($ \qquad
2. What is the runtime, in big Ω and big O, of connect?
Ω (_____), O (_____ $)$
(b) Suppose we add the method addToWQU to a WQU without path compression. The method takes in a list of elements and connects them in a random order, stopping when all elements are connected. Assume that all the elements are disconnected before the method call.
```
void addToWQU(int[] elements) {
    int[][] pairs = pairs(elements);
    for (int[] pair: pairs) {
        if (size() == elements.length) {
            return;
        }
        connect(pair[0], pair[1]);
    }
}
```

The pairs method takes in a list of elements and generates all possible pairs of elements in a random order. For example, pairs ([1, 2, 3]) might return [[1, 3], [2, 3], [1, 2]] or [[1, 2], [1, 3], $[2,3]]$.

The size method calculates the size of the largest component in the WQU.
Assume that pairs and size run in constant time.
What is the runtime of addToWQU in $\operatorname{big} \Omega$ and $\operatorname{big} O$?
$\Omega($ \qquad), $O($ \qquad

Hint: Consider the number of calls to connect in the best case and worst case. Then, consider the best/worst case time complexity for one call to connect.
(c) Let us define a matching size connection as connecting two components in a WQU of equal size. For instance, suppose we have two trees, one with values 1 and 2 , and another with the values 3 and 4 . Calling connect $(1,4)$ is a matching size connection since both trees have 2 elements.

What is the minimum and maximum number of matching size connections that can occur after executing addToWQU. Assume N, i.e. elements.length, is a power of two. Your answers should be exact.
minimum: \qquad maximum: \qquad

